Ein Beitrag zum System Palladium—Zink.

Von

H. Nowotny, E. Bauer und A. Stempfl.

Aus dem I. Chemischen Laboratorium der Universität Wien.

Mit 10 Abbildungen.

(Eingelangt am 17. Aug. 1951. Vorgelegt in der Sitzung am 11. Okt. 1951.)

Im Anschluß an Untersuchungen über Palladium—Kadmium-Legierungen¹ wurde das System Pd—Zn studiert. Die Herstellung von vollkommen einwandfreien Proben gelang wieder in einem für diese Zwecke

Abb. 1. Angenähertes Zustandsdiagramm des Systems: Palladium-Zink.

eigens konstruierten Druckofen². Ein besonderes Augenmerk legten wir auf die Durchführung von Suszeptibilitätsmessungen, eine Methode, die sich bei Benützung der Apparatur nach H. Bittner³ zur Konstitutionsaufklärung bestens bewährt.

Die Zusammenfassung aller Ergebnisse führt zu dem in Abb. 1 wieder-

- ¹ H. Nowotny, A. Stempfl und H. Bittner, Mh. Chem. 82, 949 (1951).
- ² H. Nowotny, E. Bauer und A. Stempfl, Österr. Bauztg. (im Druck).

³ H. Bittner, Mh. Chem. 82, 978 (1951).

gegebenen Zustandsschaubild, das allerdings noch nicht in allen Einzelheiten aufgeklärt ist⁴.

Der Palladium-Mischkristall (x-Phase) reicht auf Grund mikroskopischer Beobachtungen und röntgenographischer Messungen (siehe Abb. 2)

bei 750° C bis 19 At.-% Zn. Die Löslichkeit fällt nach tieferen Temperaturen etwas ab: 17 At.-% Zn bei 400° C.

An ein breites heterogenes Feld schließt sich über 720° C die β -Phase (vgl. Abb. 3), unterhalb dieser Temperatur die ξ -Phase an.

Die β -Phase liegt bei etwa 33 At.-% Zn (Pd₂Zn) und dehnt sich bei höheren Temperaturen möglicherweise bis gegen die Zusammensetzung Pd₃Zn aus. Ihre

Struktur ist kubisch raumzentriert mit 2 Atomen in der Zelle und

$$a_w = 3.04_9 k X \cdot E$$
 für 32,5 At.-% Zn

wie Tabelle 1 (S. 1088) zeigt. Bei verschiedenen Temperaturen (700; 750° C) geglühte Proben lassen eine geringe Änderung in der Gitterkonstanten erkennen.

Die Intensität von Reflexen mit ungerader Indexwohl schwach, summe ist aber doch klar erkennbar, daß eine Verteilung ge- \mathbf{so} mäß: Pd in 000; Pd und Zn statistisch verteilt in 1/2 1/21/2 angenommen werden muß. Um auch den eventuell möglichen DO₃-Typ zu prüfen, wurde die in Frage stehende Probe 100 Stdn. bei 700° C geglüht; jedoch waren keine dieser Struktur entsprechen-

Abb. 3. Heterogene Legierung (Gefügebild): α -Mk. (weiß) + β (grau).

den Überstrukturlinien zu sehen. Die Übereinstimmung in den Intensitäten für den B 2-Typ kann als sehr gut bezeichnet werden.

Die ξ -Phase besitzt, erschlossen aus dem komplizierten Röntgenogramm, ein niedrig symmetrisches Gitter, dessen Aufklärung noch aussteht.

Die im Zustandsdiagramm in diesem Gebiete angegebenen Gleichgewichtslinien wurden auf Grund des Befundes an bei verschiedenen Temperaturen geglühten Legierungen ermittelt. So zeigt eine Röntgen-

Abb. 2. Verlauf der a-Werte im α -Mk.-Bereich (Proben bei 750° C gegl.).

⁴ Das Diagramm bezieht sich auf Normaldruck.

Index	$10^3 \cdot \sin^2 \Theta_{ ext{beob.}}$	$10^3 \cdot \sin^2 \Theta_{ m ber}$	Int. gesch.	Int. ber.
(100)	61.0	69 E	achr achmach	1.0
(100)	01,9	109.4	sem senwaen	1,0
β (110)	102,3	103,4	mittelschwach	
(110)	126,1	127,1	sehr stark	59,8
(111)	189,4	190,6	sehr schwach	0,3
β (200)	206,1	207,0	$\mathbf{schwach}$	
(200)	253,0	254,2	mittelstark	9,5
β (211)	311,1	310,0	mittelschwach	·
(210)	317,6	317,7	sehr schwach	0,3
(211)	381,6	381,3	stark	18,5
β (220)	414,9	415,0	schwach	
(220)	507,9	508,0	mittelschwach	6,4
β (310)	517,5	518,0	schwach	
$(300) \\ (221)$	570,5	571,9	s. s. schwach	0,03
β (222)	621,0	622,0	sehr schwach	
(310)	636,2	635, 5	mittelstark	11,0
(311)	698, 6	699,0	sehr schwach	0,15
β (321)	725,4	725,0	mittelschwach	
(222)	762,0	762, 6	mittelschwach	4,0
(320)	824,7	826,2	sehr schwach	0,2
β (400)	828,0	827,0	sehr schwach	
(321)	887,5	889,1	sehr stark	37,5
β (330)	932,1	934,0	mittelschwach	

Tabelle 1. Auswertung der Hochtemperaturphase β im System Pd-Zn (32,5 At.-% Zn) mit Intensitätsberechnung; Cu-K-Strahlung.

aufnahme einer bei 650 und 670°C geglühten Probe (32 At.-% Zn) eindeutig: $\beta + \xi$, bei 550 und 400°C: $\alpha + \xi$. Ferner weist eine Legierung mit 33,2 At.-% Zn (bei 550°C geglüht) auf einen eutektoiden Zerfall

Abb. 4. Verlauf der a-Werte sowie c/a im Bereich der δ -Phase (750°C gegl.).

hin. Das Zweiphasenfeld $\beta + \delta$ ist nur unvollkommen nachweisbar, dagegen ist der heterogene Bereich: $\xi + \delta$ an Hand einer Legierung mit 38 At.-% Zn (bei 550°C geglüht) röntgenographisch eindeutig zu erkennen. Die gleiche Probe zeigt nach Glühung bei 650°C kein ξ mehr.

Die δ -Phase, die im L l_0 -Typ kristallisiert⁵, erstreckt sich über einen ziemlich großen Konzentrationsbereich. Dieser liegt zwischen 51,0 At.-% Zn bei 550; 51,5 bei 750

etwa 38,0 bis 39,0 einerseits und 51,0 At.-% Zn bei 550; 51,5 bei 750 bzw. 51,7 bei 850° C andrerseits; das homogene Feld umschließt dem-

⁵ H. Nowotny und H. Bittner, Mh. Chem. 81, 679 (1950).

nach die Zusammensetzungen PdZn und Pd_3Zn_2 . Der Verlauf der Gitterkonstanten bzw. des Verhältnisses c/a für bei 750°C geglühte Proben geht aus Abb. 4 hervor. Bemerkenswerterweise nimmt mit zunehmendem Pd-Gehalt, also nach der Seite gegen den Pd-Mischkristall hin, das Achsenverhältnis ab (siehe weiter unten), obwohl man a priori annehmen sollte,

Abb. 5. Heterogene Legierung (Gefügebild): $\beta + \delta$ (650°C gegl.). Abb. 6. Heterogene Legierung (Gefügebild): $\beta_1 + \gamma_1$. Peritektische Kerne von δ in β_1 -Kristallen (weiß). Abb. 7. Heterogene Legierung (Gefügebild) mit viel Eutektikum: $\beta_1 + \gamma_1$. Abb. 8. Homogene Legierung (Gefügebild) von γ_1 mit Spannungsrissen.

daß durch Austausch von Zn- durch Pd-Atome die tetragonale Symmetrie zugunsten der kubischen mehr und mehr aufgehoben wird.

Ähnlich wie im Gebiete bei etwa 35 At.-% Zn folgt auf die δ -Phase bei hohen Temperaturen wieder eine einfache kubisch raumzentrierte Phase, β_1 genannt, während bei tiefen Temperaturen eine mit ξ_1 bezeichnete niedrig symmetrische Kristallart auftritt. Das Gefüge einer heterogenen Probe: $\delta + \beta$ (bei 650° C geglüht und abgeschreckt) sieht man in Abb. 5.

Die β_1 -Phase liegt bei etwa 60 At.-% Zn und entspricht somit einer Formel Pd_2Zn_3 . Die röntgenographische Auswertung in Tabelle 2 bestätigt die krz. Struktur. Die Gitterkonstante einer Legierung mit 61,4 At.-% Zn beträgt:

$$a_w = 3,04_3 k X \cdot E,$$

ist daher nur wenig von jener der β -Phase verschieden. Es wäre möglich, daß bei genügend hohen Temperaturen und entsprechend hohen Drucken ein Übergang zwischen den beiden krz. Phasen besteht, dergestalt, daß sich bei tieferen Temperaturen die δ -Phase bildet. Gemäß der Zn-reicheren Zusammensetzung der β_1 -Phase gegenüber von β sind hier die Reflexe mit ungerader Indexsumme stärker. Die Besetzung bei β_1 ist: Zn in 000; Zn + Pd statistisch in 1/2 1/2 1/2. Ohne besondere Annahmen läßt sich in diesem System wenig über das Verhältnis der Valenzelektronen-Konzentration aussagen. Man sieht vielmehr, daß bestimmte Valenzänderungen eingeführt werden müßten,

 $10^3 \cdot \sin^2 \Theta_{\text{beob}}$ $10^3 \cdot \sin^2 \Theta$ Int. beob. Int. ber. Index (100)64.863.8 schwach 0,5103,9 104,0 mittelstark β (110) sehr stark 36,0 (110)127,8127,6sehr schwach β (111) 157,7156,50,25schwach (111)191,5 191,4 β (200) 209,6208,0 schwach 5,6mittelstark (200)256,1255,2 β (211) 311,9 312,0 mittelschwach 0,25321,6 schwach (210)319,0 383,3 382,8 stark 11,4 (211) β (220) 416, 6416,5schwach ____ mittelstark 3,85 (220)511,3 510,4 schwach β (310) 522,7519,0 0,05(300)574,8schwach 574,20,15(221)schwach β (222) 624,3 624,8 -----638,0 mittelstark 6,8 637,8 (310)699,4 (311)701,8 schwach 0,15 mittelschwach β (321) 728,6 728,0____ 764,9 mittelstark 2,5(222)765,6 schwach 0,2(320)829.3 829.4891.8 893,2 sehr stark 21,8(321)936,0 sehr schwach β (330) 937,3

Tabelle 2. Auswertung einer Pulveraufnahme, Pd—Zn-Probe mit 61,4 At.-% Zn (650°C geglüht) mit Intensitätsberechnung; Cu—K-Strahlung.

1090

um zu einem einheitlichen Bild zu gelangen. Mit 0,6 V. E. für Pd ergäbe sich wohl für die β_1 -Phase ein Wert von rund 1,5 V. E. K., doch würde β etwa die doppelte Zahl an V. E. für Palladium verlangen, wofür aber weder experimentelle Hinweise, noch theoretische Anhaltspunkte gegeben sind.

Die ξ_1 -Phase, die unterhalb von 600° C stabil ist, konnte nicht völlig homogen erhalten werden, was den röntgenographischen Befund betrifft. Proben mit 58 bis 59,5 At.-% Zn sehen im Gefüge zwar homogen aus, doch zeigen sie im Röntgenogramm einige Interferenzen von δ . Es mag sein, daß bei der Rekristallisation der Pulver etwas Zink ausgedampft ist und so eine geringe Konzentrationsverschiebung verursacht hat, eine Erscheinung, die wir allerdings nur selten beobachteten. Das Röntgenogramm von ξ_1 weist auf eine komplizierte Struktur hin, wobei eine Verwandtschaft zu den Hume-Rothery- γ -Phasen bereits erkennbar wird.

Im Gebiete zwischen rund 60 und 76 At.-% Zn bestehen die Kristallarten: $\beta_1 + \gamma_1$ bzw. $\xi_1 + \gamma_1$ nebeneinander. Von diesen Konzentrationen an nach Zink zu läßt sich bei Normaldruck eine thermische Analyse durchführen, deren Resultate Tabelle 3 vermittelt. Das Gefüge einer Legierung mit 68,6 At.-% Zn, das $\beta_1 + \gamma_1$ enthält, zeigt Abb. 6. In den β_1 -Kristallen sieht man deutlich die peritektischen Kerne (δ). Das Eutektikum mit der anschließenden γ_1 -Phase ist besonders gut im Gefügebild 7 sichtbar. Die eutektische Temperatur der Reaktion: $S = \beta_1 + \gamma_1$ liegt bei 845° C.

Tabelle 3. Ergebnisse der thermischen Analyse von Pd—Zn-Legierungen (Normaldruck).

Zusammen- setzung in At% Zn	Knickpunkt in °C	Haltepunkt in °C
68.6	845	
70,5	845	
73,5	855	
77,3	890	
84,6	860	
87,6	820	
88,4	800	
91,0	760	
94,0	705	420
96,5		420

Die Phasen γ_1 und γ . Analog wie beim System Palladium—Kadmium treten auch hier zwei strukturell etwas verschiedene Hume-Rothery- γ -Phasen auf, die sich z. B. im Gefüge bereits dadurch unterscheiden, daß die γ_1 -Kristallart typische Spannungsrisse zeigt (Abb. 8), während bei der γ -Phase diese Erscheinung fehlt. Die erstgenannte scheint, wenn auch nur wenig, so doch etwas verwickelter aufgebaut zu sein. Das Diagramm von γ stimmt weitgehend mit den Pulveraufnahmen der üblichen Hume-Rothery- γ -Phasen überein. Das Gitter von γ ist auch besser durchgebildet als jenes von γ_1 , obwohl das Pulver von γ_1 noch länger rekristallisiert wurde. Besonders die Interferenz bei sin² Θ etwa 900 ist merklich diffus. Als Gitterkonstante einer Legierung mit 81,6 At.-% Zn (400° C 9 Tage geglüht und rekrist.), die nur γ enthält, finden wir: $a_w =$ $= 9,09_3 k X \cdot E$. Auf eine Wiedergabe der Auswertung wird verzichtet. An die γ -Phase schließt weiter ein Zweiphasenfeld: $\gamma + \eta$ an, das sich von 85 bis 93 At.-% Zn erstreckt. Für die Legierungen mit 87,6,

Abb. 9. Ergebnis der magnetischen Messungen im Bereich von 0 bis 60 At.-% Zink. ⊙ Proben bei 750° C geglüht, O Proben bei 850° C geglüht.

88,4 und 91,0 At.-% Zn ergeben sich ebenfalls Haltepunkte nahe von 420° C (in Tabelle 3 nicht aufgenommen), so daß die beiden peritektischen Reaktionen: $S + \gamma = \eta$ und $S + \eta = \text{Zn}$ -Mk. praktisch zusammen-

Abb. 10. Ergebnis der magnetischen Messungen im Bereich der γ -Phasen. (Proben bei 400° C geglüht).

fallen. Die Existenz von η wurde im Gefüge röntgenographisch und auch eindeutig mit Hilfe magnetischer Messungen nachgewiesen. Der homogene Bereich der η -Phase wurde aber nicht genau ermittelt.

Die η -Phase liegt bei etwa 92,5 At.-% Zn und unterscheidet sich strukturell vom Zink-Mischkristall dadurch, daß das Achsenverhältnis der hexagonalen dichten Packung c/a bei 1,55 liegt. Da es sich nicht um einen reinen A 3-Typ handelt, wird die genaue Auswertung später gegeben.

Die Suszeptibilitätsmessungen bei 650 bzw. 750°C (Abb. 9) fügen sich bestens in das aufgestellte Diagramm ein. Der Paramagnetismus von Palladium wird durch Zink stark erniedrigt, ähnlich wie dies beim System

Pd—Cd auch der Fall ist. Die β - sowie die β_1 -Phase sind bereits schwach diamagnetisch, die Kristallarten δ und η weisen einen merklichen Diamagnetismus auf. Ähnlich stark diamagnetisch sind auch die Phasen ξ

und ξ_1 . Der kräftige anomale Diamagnetismus der γ -Phasen konnte vollauf bestätigt werden⁶ (Abb. 10) und es zeigte sich, daß das Minimum wieder auf der Seite des Metametalles liegt, eine Erscheinung, die eng mit der Auffüllung der Brillouin-Zonen derartiger elektronischer Verbindungen zusammenhängt. In den heterogenen Gebieten ist der Verlauf der Suszeptibilitäten - wie zu erwarten - in erster Näherung additiv. Einer gesonderten Erörterung bedürfen die Verhältnisse bei etwa 60 At.-% Zn, bei welcher Konzentration, wie schon früher berichtet wurde, außerordentlich stark paramagnetische Proben erhalten wurden, die bereits an Ferromagnetika erinnern. Bei ganz kleinen Einwaagen gelang es wohl ein γ -1/H-Diagramm aufzunehmen, das für Legierungen mit 57,6 bzw. 65,5 At.-% Pd allerdings zu recht niedrigen $\chi \cdot 10^6$ -Werten (+3.0 bzw. + 2.5) führt. Diese Anomalien treten allerdings nur bei Verwendung von handelsüblichem Palladium auf; für die Besonderheit dieses sehr starken Paramagnetismus spricht die Tatsache, wonach sich die magnetischen Eigenschaften (Werte) im übrigen Konzentrationsgebiete des Systems nicht ändern, gleichgültig, ob man oben genanntes Palladium oder sehr reines Pd benutzt. Der starke Paramagnetismus wird sowohl an bei 400° C geglühten Proben beobachtet wie auch an Legierungen, die bei 650°C getempert wurden.

Zusammenfassung.

Das System Palladium—Zink wurde mit Hilfe röntgenographischer, mikroskopischer, thermoanalytischer sowie magnetischer Messungen bzw. Beobachtungen in großen Zügen ermittelt.

Neben dem Pd-Mischkristall, der bei 750° C bis 19 At.-% Zn löst und dem Zn-Mk. konnten acht intermediäre Kristallarten nachgewiesen werden. Die δ -Phase PdZn (L 1₀-Typ) besitzt einen großen, nach Palladium hin ausgedehnten homogenen Bereich. Die beiden Phasen β und β_1 sind jeweils kubisch raumzentriert (B 2-Typ mit teilweise statistischer Verteilung) und nur bei Temperaturen über rund 600° C beständig. Die entsprechenden Tieftemperatur-Kristallarten haben etwa gleiche Zusammensetzung (Pd₂Zn bzw. Pd₂Zn₃) und kristallisieren in weniger symmetrischen Gittern. Die Gitterkonstanten und ihre Abhängigkeit von der Zusammensetzung werden für die eindeutig bestimmten Strukturen angegeben. Außer der bekannten Hume-Rothery- γ -Phase findet man noch eine dazu verwandte Kristallart γ_1 , die strukturell etwas komplizierter aufgebaut ist und mit β_1 ein Eutektikum bei 845° C bildet Schließlich besteht noch eine dem A 3-Typ strukturell nahestehende Phase η bei ungefähr 92,5 At.-% Zn (PdZn₁₂).

⁶ H. Nowotny und H. Bittner, Mh. Chem. 81, 887 (1950).